ELECTRON IMPACT STUDIES—XXII¹ MASS SPECTRA OF SUBSTITUTED BENZIMIDAZOLES

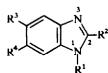
S.-O. LAWESSON and G. SCHROLL

J. H. BOWIE

and

R. G. COOKS

Department of Organic Chemistry, University of Aarhus, Aarhus C., Denmark


Department of Organic Chemistry, University of Adelaide, Adelaide, South Australia

University Chemical Laboratory, Lensfield Road, Cambridge, England

(Received in the UK 18 July 1967; accepted for publication 21 August 1967)

Abstract—The mass spectra of 22 benzimidazoles are reported and discussed. The basic fragmentation patterns have been substantiated by deuterium labelling, exact mass measurements and appropriate metastable ions. Skeletal rearrangement ions produced by the process M-CO are more prominent in the spectra of 2-benzoyl than 2-acetylbenzimidazoles.

ALTHOUGH the mass spectra of imidazoles^{2, 3} and benzimidazolium barbiturates⁴ have been discussed, no survey of the mass spectra of simple benzimidazoles has been reported. This paper is concerned with the mass spectra of the benzimidazoles (I-XXII), which are recorded in Figs 1-9 or Table 1. The compositions of ions determined by exact mass measurements are listed in Table 2. The presence of an

XXII

	R ¹	R ²	R ³	R⁴
I	н	н	н	н
н	D	н	Н	н
Ш	н	Me	Н	н
IV	D	Мс	Н	н
v	н	н	Me	Me
VI	Allyl	н	Н	Н
VII	н	SMe	н	н
VIII	D	SMe	Н	н
IX	н	n-Pr	Н	Н
x	н	C₄H,	Н	н
XI	н	COMe	Н	н
XII	н	COPh	Н	Н
XIII	Н	CH(OH)Me	Н	н

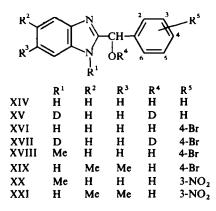


TABLE 1. MASS SPECTRA OF BENZIMIDAZOLES

II ^{a, b}	m/e I(%)	90 3	91 15	92 20	117			19(N 00	'	20 20									
IV ^{a, b, c}	m/e I(%)	90 5	93 3	94 3	104	13	31 1	32 90	133 100	134 20									
V*	m/e I(%)	50 3	63 6	64 5	65 7	72 3	73 3	77 4	89 4	90 5	91 22	92 3	116 5	-	118 10				2 3
		145 76		46(M)0	, .	47 1													
VI	m/e I(%)	41 · 16	51 5	52 3	63 4	65 4	77 11	90 5	103 4		41 7	18 6	129 3	130 13	131 27	132 5	156 7	157 81	
		158 100	(M)	159 12															
VIIIª.¢	m/e I(%)	27 4	39 3	43 3	44 7	45 3	63 8	64 . 5	77 3	78 3	90 8	91 7	92 5	118 16	119 20	120 6	122 23	131 57	132 32
		149 8			64 00	165 77	166 12		57 4										
XIII	m/e I(%)	39 6	43 12	45 8	51 100	52 6	63 7	64 8	65 10	73 6	90 6	91 16	92 14	118 36	119 71	143 17	144 30	145 20	147 54
		162 72	(M)	163 8															
XIV	<i>m/e</i> I(%)	51 6	65 8	77 23	79 7	90 6	91 13	92 9	93 7	103 8)5 I .5	118 33	119 46	147 22	194 10	195 18	205 35	206 80
		207 21		23 2 24 1	24(N 100	4) 2	225 16												
XV ^{c,d}	m/e l(%)	39 6	44 7	51 10	63 7	64 6	65 8	77 29	78 9	79 7	90 8	91 13	92 11	103 6	105 20	106 6	118 23	119 45	120 28
		121 12		47 1 14	48 10	149 5	194 9		5 1 3	96 8	205 30	200 100					23 22 18 7	24 79	
		225 71		26 29															

1877

TABLE 1-continued

XVII ^{b,c,d} m/e	104	105	118	119	120	121	147	148	155	156	157	158	183	184	185
I(%)	8	9	31	61	48	18	15	17	40	6	40	6	67	20	78
	186	187	188	189	193	194	195	200	201	202	203	205	206	207	208
	41	15	10	12	12	14	6	11	12	12	12	100	37	17	7
	272	273	274	275	284	285	286	287	288	289	300	301	302	303	304
	32	36	39	33	9	9	21	19	17	13	18	26	54	65	57
	305	306													
	45	23													
XVIII ^d m/e	51	76 7	7 78	104	131	132	133	147	161	183	185	205	220	287	299
I(%)	6	62	9 9	8	32	31	31	53	43	9	9	7	12	7	6
	301	315	316()	M) 3	17 3	18(M)	319)							
	8	27	100	•	43	97	16	i							
XIX ^d m/e	77	78 9	01 10	4 13	1 14	5 14	6 14	7 15	5 15	7 17	5 18	3 18	5 21	8 21	9 232
I(%)	15	6	8	61	2 1	2 1	33	6	6	61	31	0 1	0	8	6 10
	233	234	235	285	287	299	300	301	302	303	312	313	314	315	316
	100	28	6	6	6	11	28	17	26	9	16	14	39	16	24
	328	329	330()	M) 3	31 3	32(M)	333	5							
	6	9	75		21	69	12	!							
XXI ^d m/e	76	77 9	01 10	4 13	1 14	5 14	6 14	7 15	0 17	5 22	1 22	2 23	2 23	3 23	4 237
I(%)	8					5 1				9 1		0 1			
	249	250	251	262	265	267	281	295	296	297(1	M) 2	98			
	7	13	6	11	8	21	10	20	11	100		19			
						-									-

All peaks greater than 2% of the base peak (100%) are recorded.
Only peaks above m/e 90 are recorded.

⁶ Because of the M-1 and M-2 ions, the isotopic purity cannot be determined.

^d All peaks greater than 5% of the base peak are recorded.

FIG. 1.

Compound	m/e	Composition	Compound	m/e	Composition
I	63	C,H3	XIV	194	C ₁₃ H ₁₀ N ₂
	64	C ₅ H ₄		195	$C_{13}H_{11}N_{2}$
	91	C ₆ H ₅ N			
			XVI	205	C14H9N2
v	91	C ₇ H ₇		272/274	C ₁₃ H ₉ N ₂ Br
	118	C ₈ H ₈ N			
			XVIII	147	C ₈ H ₇ N ₂ O
VI	104	C7H6N		161	C ₉ H ₉ N ₂ O
	118	$C_7H_6N_2$		205	$C_{14}H_9N_2$
	131	C ₈ H ₇ N ₂		220	$C_{15}H_{12}N_{2}$
				300/302	C ₁₅ H ₁₃ N ₂ Br
VII	118	$C_7H_6N_2$			
	122	C ₆ H ₄ NS	XIX	233	$C_{16}H_{13}N_2$
	131	C ₈ H ₇ N ₂			
			XX	118	C7H6N2
XI	117	C7H5N2		119	C ₇ H ₇ N ₂
	118	$C_7H_6N_2$		147	C ₈ H ₇ N ₂ O
	131	C ₈ H ₈ N ₂		220	$C_{14}H_8N_2O$
XII	193	$C_{13}H_9N_2$	XXI	233	C16H13N2
	194	C ₁₃ H ₁₀ N ₂		267	C ₁₅ H ₁₃ N ₃ O ₂
хш	91	C ₆ H₅N	XXII	118	C ₇ H ₆ N ₂
	92	C ₆ H ₆ N		119	C ₇ H ₇ N ₂
	118	$C_7H_6N_2$		122	C ₆ H ₄ NS
	119	C ₇ H ₇ N ₂			
	120	$C_7H_8N_2$			
	143	$C_9H_7N_2$			
	144	C ₉ H ₈ N ₂			
	145	C ₉ H ₉ N ₂			
	147	C ₈ H ₇ N ₂ O			

TABLE 2. COMPOSITIONS OF SOME IONS IN THE SPECTRA OF I-XX

asterisk (*) in the text or a figure indicates that a metastable peak has been observed for the fragmentation in question.

The mass spectra (Figs 1 and 2) of benzimidazole (I) and 2-methylbenzimidazole (III) should be compared with those³ of imidazole and 2-methylimidazole, respectively. The spectrum of benzimidazole (I) exhibits the molecular ion as the base peak, and the fragmentation process M—HCN—HCN—H· (to form $C_5H_3^+$, m/e 63). The initial loss of HCN probably produces a (m/e 91), and the spectrum (Table 1) of N-d₁-benzimidazole (II) shows loss of both HCN and DCN from the molecular ion, which indicates that the initial loss of HCN (Fig. 1) is non specific. This is also true of the M—HCN process in the spectrum of imidazole.³

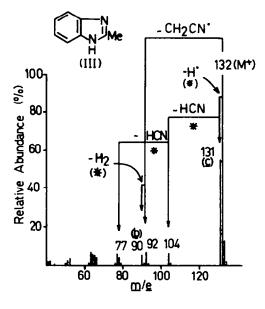
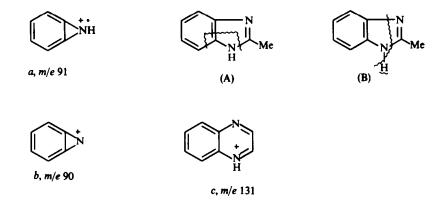



Fig. 2.

The mass spectrum (Fig. 2) of 2-methylbenzimidazole (III) exactly parallels that of 2-methylimidazole.³ Comparison of the mass spectra of III and IV show that the M—HCN ion originates as in A (i.e. the m/e 104 ion in the spectrum of III remains

unchanged in that of IV). The M—CH₂CN· process involves the 2 and 3 positions (i.e. m/e 93 in III moves to 93/94 in IV), while the overall process M—CH₂CN·—H₂ (to b, m/e 90) may be explianed by the loss indicated in B (i.e. m/e 90 in III remains unchanged in IV). It is also probable that the M—H· ion (m/e 131) is formed by loss of a hydrogen atom from the Me group, with concomitant ring expansion to form the stable cation c (cf. Ref. 3). The spectrum (Fig. 3) of 2-n-propylbenzimidazole (IX) shows pronounced loss of ethylene with accompanying H rearrangement to give m/e 132, the base peak of the spectrum. The structure of this fragment corresponds to the 2-methylbenzimidazole

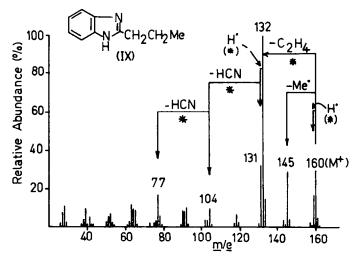
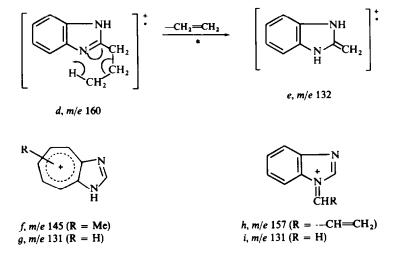



Fig. 3.

molecular ion, as the spectrum below m/e 132 is very similar to that (Fig. 2) of 2-methylbenzimidazole. The formation of m/e 132 probably proceeds by the process $d \rightarrow e$, with e then rearranging to the 2-methylbenzimidazole radical ion. A similar 6-membered transition state has been invoked to explain the loss of ethylene from 3-propylpyridines.⁵ 2-Alkyloxazoles (where the alkyl group is greater than ethyl) also exhibit β -cleavage with hydrogen rearrangement to produce the 2-methyl-oxazole radical ion.⁶

The spectra of V, VI and X are unexceptional. 5,6-Dimethylbenzimidazole (V), on electron impact, behaves like o-xylene,⁷ producing prominent M—H· and M—Me· ions, which may be represented as the tropylium species f and g, respectively. The mass spectrum (Table 1) of N-allylbenzimidazole (VI) exhibits loss of both a hydrogen radical and a C₂H₃ radical from the molecular ion to form the stable cations h and i, while the molecular ion of 2-phenylbenzimidazole (X) may decompose either by loss of benzonitrile to form a (m/e 91) or by successive losses of two molecules of HCN to form $m/e 140 (C_{11}H_8^{-1})$.

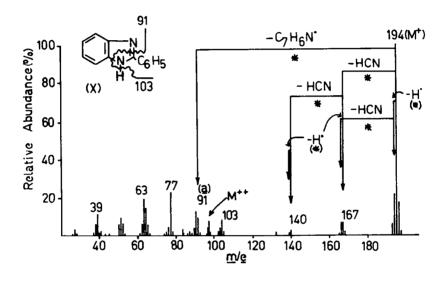
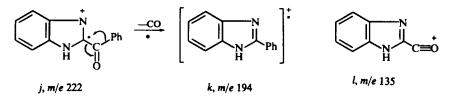
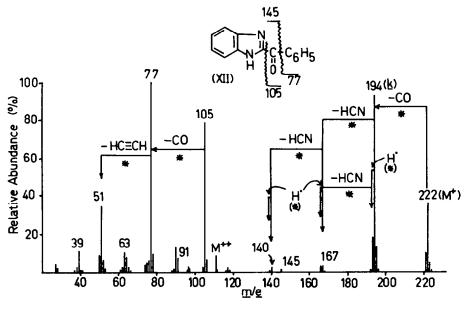
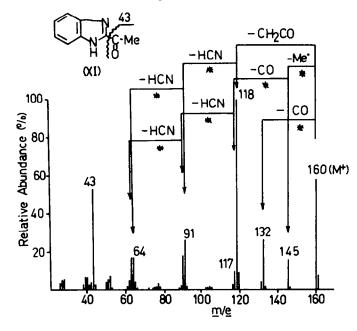
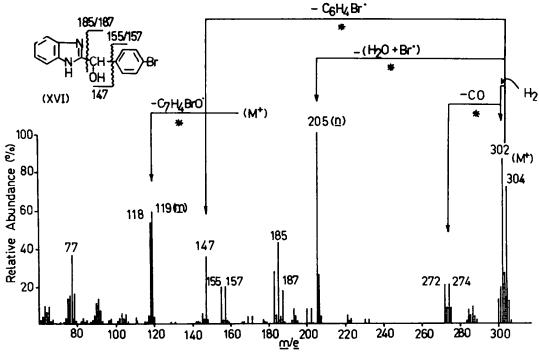




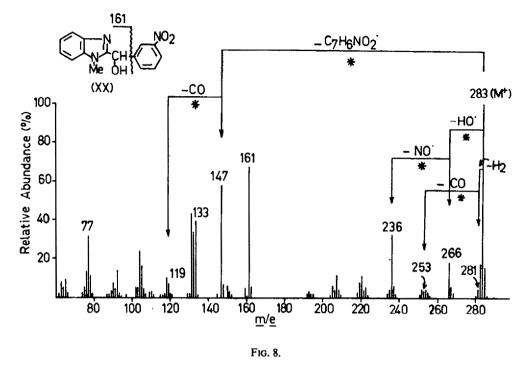
FIG. 4.

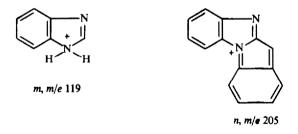
By far the most interesting features observed in the spectra (Figs 5 and 6) of the acylbenzimidazoles (XI and XII) are the pronounced skeletal rearrangement fragments which are produced by loss of carbon monoxide from the various molecular ions. Such processes are currently exciting much interest,⁸ and of particular relevance are the M—CO fragments which are present in the spectra of acylthiophenes.⁹ Similar processes are generally not observed in the spectra of acylbenzenes (benzophenone is an exception¹⁰). The M—CO fragment in the spectrum (Fig. 5) of 2-benzoylbenzimidazole is extremely pronounced (93% of the base peak), and its structure is probably that of the 2-phenylbenzimidazole radical ion (see $j \rightarrow k$), as the spectrum below m/e 194 is very similar to that (Fig. 4) of 2-phenylbenzimidazole, except for the presence of peaks due to the benzoyl cation (m/e 105) and its decomposition ions m/e 77 (base peak) and m/e 51. It is of interest to note that the expected α cleavage to carbonyl to produce the acylium cation l occurs only to the extent of 2% of the base peak, and that the two major processes are the formation of the skeletal rearrangement ion and the production of the benzoyl cation.


The skeletal rearrangement peak in the spectrum (Fig. 6) of 2-acetylbenzimidazole (XI) is not as pronounced as it is in that of XII (viz. 26% for XI, 93% for XII). The major process in this spectrum is M—CH₂CO, which forms the benzimidazole radical ion (m/e 118, base peak), which fragments as described above.



When the secondary alcohols (XIII-XXI) are introduced into the mass spectrometer through the heated inlet system, hydrogen is lost thermally, and the mass spectra obtained are those of the corresponding ketones. All these spectra contain M—CO fragments. The abundances of these ions relative to the base peaks in the spectra of the derived ketones are XIV, 100; XVI, 100; XVIII, 95; XIX, 62; XX, 43; and XXI, 92%.


The direct insertion technique was used to obtain the spectra (Figs 7 and 8 or Table 1) of the secondary alcohols XIII-XXI. Three processes are observed which are common to all spectra: (a) $M-H_2$ -CO. The loss of hydrogen is probably thermal since no metastable ions are observed for the process $M-H_2$. (b) The formation of the protonated benzimidazole or N-methylbenzimidazole cation (e.g. *m* for XIV and XVI), which is formed by cleavage of the bond between C-2 and the



carbon bearing oxygen, with concomitant double hydrogen rearrangement. One of the migrating hydrogens is that attached to oxygen, as evidenced by the spectra (Table 1) of XV and XVII. (c) The process $M-C_6H_4R \cdot (R = Br \text{ or } NO_2)$ produces an ion whose composition corresponds to the appropriate protonated formyl-benzimidazole cation.

There are three further features of the spectra of the secondary alcohols (XIV-XXI) which provide information concerning the nature of the substituent on nitrogen. The spectra (Figs 7 and 8 or Table 1) of the 1-Me and 1-H benzimidazoles (XIV-XXI) show marked differences. When hydrogen is bound to nitrogen (XIV, XVI, XIX and XXI) a prominent ion (the base peak in the spectra of XVI and XIX) is produced in a one step process from the molecular ion, by combined loss of R (R = H, Br of NO₂) and water (see Fig. 7). The two hydrogens involved are those bound to nitrogen and oxygen (from the spectra of XV and XVII in Table 1). A plausible structure for this ion is n (m/e 205 in the spectrum of XV), and its presence may be used to detect

TABLE 3. MAJOR FRAGMENT IONS IN THE MASS SPECTRA OF XIV-XXI

Compound	MH ₂ CO	8 P	Protomated benzimidazole cation	nated idazole on	M-C ₆ H ₄ R	,H4R	M(R	M(R + H ₂ O)	Skel rearran _i ic	Skeletal carrangement ion
	m/e	(%)	m/e	(%)	m/e	(%)	m/e	(%)	m/e	(%)
XIX	196	10	119	8	147	22	205	35		
IVX	272/274	20	119	8	147	¥	205	<u>10</u>	-	I
IIIVX	284/286	7	133	31	161	43	ļ	+	147	33
XIX	300/302	28	147	36	175	13	233	100	Personaan	I
xx	253	ŝ	133	38	161	65	-	1	147	57
XXI	267	21	147	ន	175	19	233	31	The second se	ļ

the presence of the 1-H substituent. No corresponding ions are observed in the spectra (Fig. 8 or Table 1) of the secondary alcohols having 1-methylsubstituents (XVIII and XX).

Second, the spectra of the 1-H benzimidazoles (XIV, XVI, XIX and XXI) exhibit $M-H_2O$ ions. This is particularly noticeable in the spectrum (Table 1) of XIV where the $M-H_2O$ ion constitutes 80% of the base peak. The two hydrogens involved in the $M-H_2O$ process are again those bound to nitrogen and oxygen (see the spectrum of XV, Table 1). This process is not observed in the spectra of XVIII or XX.

Third, the spectra (Fig. 8 or Table 1) of XVIII and XX exhibit an ion which is not present in those of the 1-H derivatives. This ion (produced in a one step process from the molecular ion) must be produced by a skeletal rearrangement process, as it is formally derived by α cleavage to C-2 with accompanying rearrangement of the alcoholic oxygen to the benzimidazole system. Although the structure of this ion (*m/e* 147, C₈H₇N₂O) is unknown, its presence allows the detection of the N-methyl substitutent.

The main features of the spectra of XIV-XXI are summarized in Table 3 and Figs 7 and 8. The spectrum (Table 1) of the substituted ethyl alcohol (XIII) is unexceptional; the major process being loss of an acetyl radical from the molecular ion to form the protonated benzimidazole cation m.

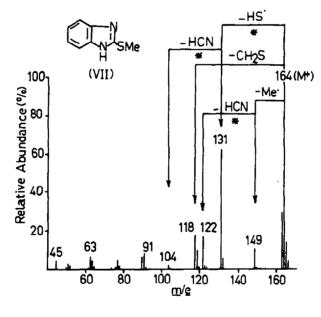
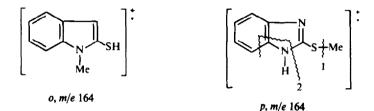



FIG. 9.

Skeletal rearrangement fragments are also observed in the spectrum (Fig. 9) of 2-thiomethylbenzimidazole (VII), where the M—SH ion (m/e 131) constitutes 63% of the base peak. It has been shown¹¹ that the M—SH process in the spectrum of thioanisole occurs from a common, rearranged molecular ion,¹² and that rearrangement processes which involve hydrogen transfers between the methyl group and the aromatic nucleus do not occur.¹¹ The spectra (Fig. 9, Table 1) of VII and XXII are

very similar (small differences are noted in the relative intensities of certain ions), which may indicate that they have a common molecular ion; viz. either one rearranging to the other, or with both rearranging to a common intermediate ion. The spectrum (Table 1) of $1-d_1-2$ -thiomethylbenzimidazole (VIII) shows that the hydrogen involved in the M—SH process is bound to carbon. The hydrogen presumably comes from the methyl group, and the rearranged molecular ion clearly cannot correspond to o. It is probable that the rearrangement is analogous to that observed in thioanisole.

Other processes observed in the spectrum of VII are (1) M—Me —HCN and (2) M—CH₂S. A comparison of the spectra of VII and VIII shows that process 1 occurs in a specific manner as indicated in p (m/e 122 is not shifted to m/e 123), while process 2 is a random one, involving loss of hydrogen attached to both carbon and nitrogen.

EXPERIMENTAL

Mass spectra were measured by the direct insertion technique with either an Hitachi Perkin-Elmer RMU 6D mass spectrometer (I-VI; IX-XII) or an A.E.I. MS9 mass spectrometer (VII, VIII and XIII-XXII) with a source temperature ca. 100°. Exact mass measurements were made with the MS9, using a resolution of 14,000 (10% valley definition) with heptacosafluorotributylamine providing reference masses. All measurements were correct to within 15 ppm.

Compounds I, III and V were purified commercial samples. The following compounds were prepared by standard procedures: VI,¹³ VII,¹⁴ IX,¹⁵ X,¹⁶, XI,¹⁷ XII,¹⁷ XIII,¹⁸ XIV,¹⁸ XVI,¹⁹ XVIII,²⁰ XIX,¹⁹ XX²⁰ and XXI.²⁰

The spectra of II, IV, VIII, XV and XVII were obtained by introducing the unlabelled compounds directly into the source with D_2O .²¹

Acknowledgements—A grant (to S.-O. L.) from Statens Almindelige Videnskabsfond, and an Elsie Ballot Fellowship (to R.G.C.) are gratefully acknowledged.

The Hitachi Perkin-Elmer RMU 6D mass spectrometer was purchased with the aid of a grant from the Australian Research Grants Commission.

Professor S. Siddappa generously provided samples (XIV, XVI, XVIII-XXI).

REFERENCES

- ¹ Part XXI. E. Dynesen, S.-O. Lawesson, G. Schroll, J. H. Bowie and R. G. Cooks, J. Chem. Soc. (B), in press.
- ² J. H. Bowie, R. G. Cooks, S.-O. Lawesson, P. Jakobsen and G. Schroll, Chem. Commun. 539 (1966).
- ³ J. H. Bowie, R. G. Cooks, S.-O. Lawesson and G. Schroll, Austral. J. Chem. 20, 1613 (1967).
- ⁴ J. W. Clark-Lewis, J. A. Edgar, J. S. Shannon and M. J. Thompson, Ibid. 17, 877 (1964).
- ⁵ H. Budzikiewicz, C. Djerassi and D. H. Williams, Interpretation of Mass Spectra of Organic Compounds p. 255. Holden-Day, San Francisco (1964).
- ⁶ J. H. Bowie, R. G. Cooks, P. F. Donaghue, H. J. Rodda and D. H. Williams, Organic Mass Spectrometry, submitted for publication.
- ⁷ H. M. Grubb and S. Meyerson, *Mass Spectrometry of Organic Ions* (Edited by F. W. McLafferty) Chap. 10. Academic Press, New York (1963).

- ⁸ For a review see P. Brown and C. Djerassi, Angew. Chem. 79, 481 (1967).
- ⁹ J. H. Bowie, R. G. Cooks, S.-O. Lawesson and C. Nolde, J. Chem. Soc. (B), 616 (1967).
- ¹⁰ P. Natalis and J. L. Franklin, J. Phys. Chem. 69, 2943 (1965).
- ¹¹ J. H. Bowie, S.-O. Lawesson, J. Ø. Madsen, G. Schroll and D. H. Williams, J. Chem. Soc. (B), 951 (1966).
- ¹² J. H. Beynon, B. E. Job and A. E. Williams, Z. Naturforsch. 20a, 883 (1965).
- ¹³ J. G. Buchanan, A. W. Johnson, J. A. Mills and A. R. Todd, J. Chem. Soc. 2845 (1950).
- ¹⁴ R. G. Cooks and P. Sykes, unpublished observations.
- ¹⁵ W. O. Pool, H. J. Harwood and A. W. Ralston, J. Am. Chem. Soc. 59, 178 (1937).
- ¹⁶ D. Jerchel, H. Fischer and M. Kracht, Liebigs Ann. 575, 162 (1952).
- ¹⁷ G. W. H. Cheesman, J. Chem. Soc. 4645 (1964).
- ¹⁸ M. A. Phillips, *Ibid.* 2893 (1928).
- ¹⁹ K. H. Sinnur, G. R. Revankar and S. Siddappa, Monatsh. 97, 417 (1966).
- ²⁰ U. V. Savant, G. R. Revankar and S. Siddappa, J. Ind. Chem. Soc. 43, 194 (1966).
- ²¹ J. S. Shannon, Austral. J. Chem. 15, 265 (1962).